Tunable vertical-cavity SOAs: a unique combination of tunable filtering and optical gain

نویسنده

  • Garrett D. Cole
چکیده

In this paper the design and performance of novel micromechanically-tunable vertical-cavity semiconductor optical amplifiers (VCSOAs) are presented. Theoretical design issues include overviews of the signal gain, wavelength tuning characteristics, saturation properties, and noise figure of these unique devices. Using general Fabry-Pérot relationships it is possible to model both the wavelength tuning characteristics and the peak signal gain of tunable VCSOAs, while amplifier rate equations are used to describe the saturation and noise properties. It is found that these devices follow many of the same design trends as fixed-wavelength VCSOAs. However, with tunable devices, the tuning mechanism is found to result in varying amplifier properties over the wavelength span of the device. Experimental results for three generations of devices are given. The culmination of this work is a new bottom-emitting design in which the optical cavity is inverted and the MEMS-tuning structure serves as the high-reflectivity back mirror. By suppressing the variation in mirror reflectance with tuning, this configuration exhibits a two-fold increase in the effective tuning range as compared with our initial devices—with a minimum of 5 dB fiber-to-fiber gain (12 dB on-chip gain) over a wavelength span of roughly 21 nm, from 1557.36 nm to 1536.43 nm. Furthermore, these devices exhibit saturation, bandwidth and noise properties similar to state-of-the-art fixed-wavelength VCSOAs, including a fiber-coupled saturation output power of -1.36 dBm and an average gain bandwidth and noise figure of 65.2 GHz and 7.48 dB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing voltage tunable single and multi-channel optical filter with 1DDPC nano-structure

An electro-optic tunable single and multi-channel optical filter based on one-dimensional defective photonic crystal (1DDPC) structure is proposed. A couple of externally tunable defects in arrangement of (AB)5D1(BA)D2(BA)5, where A and B are dielectric materials, D1 and D2 are the tunable defects are used. The defects are composed of the ferroelectric LiNbO3 crystals and two pairs of thin Ag l...

متن کامل

Designing voltage tunable single and multi-channel optical filter with 1DDPC nano-structure

An electro-optic tunable single and multi-channel optical filter based on one-dimensional defective photonic crystal (1DDPC) structure is proposed. A couple of externally tunable defects in arrangement of (AB)5D1(BA)D2(BA)5, where A and B are dielectric materials, D1 and D2 are the tunable defects are used. The defects are composed of the ferroelectric LiNbO3 crystals and two pairs of thin Ag l...

متن کامل

Design On-Line Tunable Gain Artificial Nonlinear Controller

One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...

متن کامل

Design On-Line Tunable Gain Artificial Nonlinear Controller

One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...

متن کامل

All-Optical Reconfigurable-Tunable 1×N Power Splitter Using Soliton Breakup

In this paper, we numerically simulated a glass-based all-optical 1×N power splitter with eleven different configurations using soliton breakup in a nonlinear medium. It is shown that in addition to reconfigurability of the proposed splitter, its power splitting ratio is tunable up to some extent values too. Nonlinear semivectorial iterative finite difference beam propagation method (IFD-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005